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THE SPECTRAL REPRESENTATION OF
BESSEL PROCESSES WITH CONSTANT DRIFT:
APPLICATIONS IN QUEUEING AND FINANCE

VADIM LINETSKY,∗ Northwestern University

Abstract

Bessel processes with constant negative drift have recently appeared as heavy-traffic limits
in queueing theory. We derive a closed-form expression for the spectral representation of
the transition density of the Bessel process of order ν > −1 with constant drift µ �= 0.
When ν > − 1

2 and µ < 0, the first term of the spectral expansion is the steady-state
gamma density corresponding to the zero principal eigenvalue λ0 = 0, followed by an
infinite series of terms corresponding to the higher eigenvalues λn, n = 1, 2, . . . , as
well as an integral over the continuous spectrum above µ2/2. When −1 < ν < − 1

2 and
µ < 0, there is only one eigenvalue λ0 = 0 in addition to the continuous spectrum. As
well as applications in queueing, Bessel processes with constant negative drift naturally
lead to two new nonaffine analytically tractable specifications for short-term interest
rates, credit spreads, and stochastic volatility in finance. The two processes serve as
alternatives to the CIR process for modelling mean-reverting positive economic variables
and have nonlinear infinitesimal drift and variance. On a historical note, the Sturm–
Liouville equation associated with Bessel processes with constant negative drift is closely
related to the celebrated Schrödinger equation with Coulomb potential used to describe
the hydrogen atom in quantum mechanics. Another connection is with D. G. Kendall’s
pole-seeking Brownian motion.
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1. Introduction

In a recent paper, Coffman et al. (1998) showed that a Bessel diffusion {Zt , t ≥ 0} with
constant negative drift c < 0 and with the infinitesimal generator

(Gf )(z) = 1
2σ

2f ′′(z)+
(
d

z
+ c

)
f ′(z)

arises naturally as a heavy-traffic limit in queueing theory. Assuming that 2dσ−2 > −1, this
process possesses a stationary distribution with gamma density (when −1 < 2dσ−2 < 1, the
process can hit the origin, in which case it instantaneously reflects; when 2dσ−2 ≥ 1, the
origin is an unattainable entrance boundary). The purpose of the present paper is (i) to give
an explicit analytical expression for the spectral representation of the transition density of the
Bessel process with constant drift and (ii) to introduce several new applications in finance.
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328 V. LINETSKY

It is convenient to re-scale the process asXt = σ−1Zt and introduce standardized parameters
µ := c/σ and ν := dσ−2 − 1

2 . The re-scaled process X has the infinitesimal generator

(Gf )(x) = 1
2f

′′(x)+
(
ν + 1

2

x
+ µ

)
f ′(x) = 1

m(x)

(
f ′(x)
s(x)

)′
, (1)

where the scale and speed densities are

s(x) = x−2ν−1e−2µx and m(x) = 2x2ν+1e2µx

respectively. According to Feller’s classification of boundaries, infinity is a natural boundary
and is non-attracting when µ < 0 and attracting when µ > 0. The boundary at the origin has
the same classification as for the standard Bessel process of order ν with µ = 0: the origin
is entrance for ν ≥ 0, regular when −1 < ν < 0 and exit for ν ≤ −1 (see e.g. Borodin
and Salminen (1996, p. 114)). In this paper we assume that ν > −1 and impose a reflecting
boundary condition at the origin in the regular case −1 < ν < 0. When ν = − 1

2 , the process
reduces to the well-studied reflected Brownian motion with drift (see e.g. Abate and Whitt
(1987a), (1987b)) and in this paper we always assume that ν �= − 1

2 .
Let Cb([0,∞)) be the Banach space of continuous and bounded functions on [0,∞).

Conditional expectation operators

(Pt f )(x) := Ex[f (Xt )]

form a Feller semigroup in Cb([0,∞)) with the infinitesimal generator (1) with domain

D(G) = {f ∈ Cb([0,∞)) : Gf ∈ Cb([0,∞)), boundary condition at 0}

with the boundary condition at the origin:

lim
x↓0

f ′(x)
s(x)

= 0. (2)

When µ < 0, the process possesses a stationary distribution with gamma density

π(x) = 2|µ|
�(2ν + 2)

(2|µ|x)2ν+1e2µx. (3)

When µ > 0, the process is transient.
In Section 2 we obtain an explicit analytical expression for the spectral representation of the

transition density. In Section 3 we illustrate this with numerical examples. In Section 4 we
show that Bessel processes with constant drift naturally lead to two new analytically tractable
nonaffine specifications for short-term interest rates and other positive mean-reverting financial
variables. The two processes serve as nonaffine alternatives to the CIR (Cox–Ingersoll–Ross)
process and have nonlinear infinitesimal drift and variance. In Section 5 we state a useful
absolute continuity relationship between the distributions of Bessel processes with different
order and drift. This relationship is then used in Section 6 to obtain explicit expressions for the
state-price densities of the two nonaffine interest-rate models.
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2. The spectral representation of the transition density

It is classical (see McKean (1956) and Itô and McKean (1974, Chapter 4.11)) that the transi-
tion density p(t; x, y) admits a spectral representation (termed the eigendifferential expansion
by Itô and McKean) associated with the spectral decomposition of a self-adjoint operator in
the Hilbert space L2([0,∞),m) associated with the infinitesimal generator G. More precisely,
let L2([0,∞),m) be the Hilbert space of square-integrable functions with the speed density
m and endowed with the inner product (f, g) = ∫ ∞

0 f (x)g(x)m(x) dx. The Feller semigroup
{Pt , t ≥ 0} restricted to Cb([0,∞))∩L2([0,∞),m) extends uniquely to a strongly continuous
semigroup of self-adjoint contractions in L2([0,∞),m) with the infinitesimal generator G,
an unbounded self-adjoint, nonpositive operator in L2([0,∞),m) (see McKean (1956) and
also Langer and Schenk (1990)). We use the same notation for the infinitesimal generator
in Cb([0,∞)) and in L2([0,∞)); it should not create any confusion. The domain of G in
L2([0,∞),m) is

D(G) =
{
f ∈ L2([0,∞),m) : f, f ′ ∈ AC([0,∞)),Gf ∈ L2([0,∞),m), lim

x↓0

f ′(x)
s(x)

= 0

}
,

where AC([0,∞)) is the space of absolutely continuous functions. A number of general
properties of the spectral representation ofp(t; x, y) associated with the spectral decomposition
of G were proved by McKean (1956). Here we are interested in an explicit analytical expression
for the spectral representation of the Bessel process with constant drift.

Proposition 1. (Spectral representation.) Define

β := −µ(ν + 1
2 ). (4)

For ν > −1, ν �= − 1
2 , µ ∈ R, µ �= 0, and t > 0, the transition density has the following

spectral representation:

p(t; x, y) = pd(t; x, y)+ pc(t; x, y), (5)

where pd(t; x, y) and pc(t; x, y) are, respectively, the discrete and continuous parts of the
spectral representation. For x > 0,

pc(t; x, y) = 1

2π

∫ ∞

0
e−(1/2)(µ2+ρ2)t

(y
x

)ν+1/2
eµ(y−x)+πβ/ρ

×Miβ/ρ,ν(−2iρx)M−iβ/ρ,ν(2iρy)

∣∣∣∣�(
1
2 + ν + iβ/ρ)

�(1 + 2ν)

∣∣∣∣
2

dρ, (6)

where �(·) is the gamma function andM�,ν(·) is the Whittaker function related to the Kummer
confluent hypergeometric function (see Slater (1960) and Buchholz (1969) and also (14) below).
When x = 0,

pc(t; 0, y) = 1

2π

∫ ∞

0
e−(1/2)(µ2+ρ2)t yν+1/2eµy+πβ/ρ

×Miβ/ρ,ν(−2iρy)eiπ(ν/2+1/4)
∣∣∣∣�(

1
2 + ν + iβ/ρ)

�(1 + 2ν)

∣∣∣∣
2

(2ρ)ν+1/2 dρ. (7)
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The discrete part has the following form:

(i) When ν > − 1
2 , µ < 0, and x > 0,

pd(t; x, y) = π(y)+
∞∑
n=1

e−λnt n!β(2βy)2ν+1e2µy

(n+ ν + 1
2 )

2ν+3�(2ν + n+ 1)

× exp

(
− µn

n+ ν + 1
2

(x + y)

)
L(2ν)n

(
2βx

n+ ν + 1
2

)
L(2ν)n

(
2βy

n+ ν + 1
2

)
,

(8)

where L(α)n (·) is the generalized Laguerre polynomial, π(·) is the stationary density (3),
and

λn = µ2

2

{
1 − (ν + 1

2 )
2

(n+ ν + 1
2 )

2

}
, n = 1, 2, . . . . (9)

When ν > − 1
2 , µ < 0, and x = 0,

pd(t; 0, y) = π(y)+
∞∑
n=1

e−λnt β(2βy)2ν+1e2µy

(n+ ν + 1
2 )

2ν+3�(2ν + 1)

× exp

(
− µn

n+ ν + 1
2

y

)
L(2ν)n

(
2βy

n+ ν + 1
2

)
. (10)

(ii) When −1 < ν < − 1
2 , µ < 0, and x ≥ 0,

pd(t; x, y) = π(y). (11)

(iii) When ν > − 1
2 , µ > 0, and x ≥ 0,

pd(t; x, y) ≡ 0. (12)

(iv) When −1 < ν < − 1
2 , µ > 0, and x > 0,

pd(t; x, y) =
∞∑
n=1

e−λnt n!β(2βy)2ν+1e2µy

(n+ ν + 1
2 )

2ν+3�(2ν + n+ 1)

× exp

(
− µn

n+ ν + 1
2

(x + y)

)
L(2ν)n

(
2βx

n+ ν + 1
2

)
L(2ν)n

(
2βy

n+ ν + 1
2

)
,

(13)

where the λn are as given by (9). When −1 < ν < − 1
2 , µ > 0, and x = 0,

pd(t; 0, y) =
∞∑
n=1

e−λnt β(2βy)2ν+1e2µy

(n+ ν + 1
2 )

2ν+3�(2ν + 1)

× exp

(
− µn

n+ ν + 1
2

y

)
L(2ν)n

(
2βy

n+ ν + 1
2

)
.
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Remark 1. (Symmetry of the integrand.) In (6), the Whittaker functionM�,ν(·) appears twice
with an imaginary argument. This function can be defined as

M�,ν(z) = zν+1/2e−z/2
1F1(ν − � + 1

2 ; 1 + 2ν; z), (14)

where

1F1(a; b; z) =
∞∑
n=0

(a)n

(b)n

zn

n!
is the Kummer confluent hypergeometric function and (a)n = a(a+1) · · · (a+n−1), (a)0 ≡ 1
is the Pochhammer symbol. Due to the presence of the factor zν+1/2 in the definition, M�,ν(·)
is a multivalued function of a complex variable. We take as its principal branch that which lies
in the complex plane cut along the negative real axis. In this case, −π < arg(z) ≤ π (see Slater
(1960) and Buchholz (1969) for more details). The expressionMiβ/ρ,ν(−2iρx)M−iβ/ρ,ν(2iρy)
in the integrand in (6) is both real and symmetric in x and y:

Miβ/ρ,ν(−2iρx)M−iβ/ρ,ν(2iρy) = M−iβ/ρ,ν(2iρx)Miβ/ρ,ν(−2iρy)

= Miβ/ρ,ν(−2iρx)Miβ/ρ,ν(−2iρy)eiπ(ν+1/2)

= M−iβ/ρ,ν(2iρx)M−iβ/ρ,ν(2iρy)e−iπ(ν+1/2). (15)

This stems from the symmetry property of the Whittaker function (Slater (1960, p. 11)):

Miβ/ρ,ν(−2iρx) = e−iπ(ν+1/2)M−iβ/ρ,ν(2iρx).

Similarly, the expression Miβ/ρ,ν(−2iρy)eiπ(ν/2+1/4) appearing in (7) is real.
For s > 0, let

Gs(x, y) =
∫ ∞

0
e−stp(t; x, y) dt (16)

be the resolvent kernel or Green’s function. To prove Proposition 1, we start with the following
lemma.

Lemma 1. (Resolvent kernel.) Suppose that ν > −1, ν �= − 1
2 , and µ ∈ R, µ �= 0. For s > 0,

define

�(s) := β√
2s + µ2

(17)

(where β is defined in (4)). Then

Gs(x, y) = �( 1
2 + ν − �(s))√

2s + µ2�(1 + 2ν)

(y
x

)ν+1/2
eµ(y−x)

×M�(s),ν(2(x ∧ y)
√

2s + µ2 )W�(s),ν(2(x ∨ y)
√

2s + µ2 ), (18)

where x ∧ y ≡ min{x, y}, x ∨ y ≡ max{x, y}, and M�,ν(·) and W�,ν(·) are the Whittaker
functions related to the Kummer and Tricomi confluent hypergeometric functions respectively
(see Slater (1960) and Buchholz (1969)). When x = 0, this reduces to

Gs(0, y) = �( 1
2 + ν − �(s))√

2s + µ2�(1 + 2ν)
yν+1/2eµyW�(s),ν(2y

√
2s + µ2 ). (19)
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Proof. It is classical (see Itô and McKean (1974)) that the resolvent kernel can be given in
the form

Gs(x, y) = w−1
s m(y)ψs(x ∧ y)φs(x ∨ y), (20)

where the functions ψs(·) and φs(·) can be characterized as the unique (up to a multiple
independent of x) solutions of the ODE

(Gu)(x) ≡ 1
2u

′′(x)+
(
ν + 1

2

x
+ µ

)
u(x) = su(x) (21)

(see e.g. Borodin and Salminen (1996, p. 18)) by first demanding thatψs is increasing and φs is
decreasing and, secondly, demanding that ψs satisfies the boundary condition (2) at the origin
in the regular case −1 < ν < 0 (in the singular case ν ≥ 0, this boundary condition is satisfied
automatically). The Wronskian ws in (20) is defined by

φs(x)ψ
′
s(x)− ψs(x)φ

′
s(x) = s(x)ws. (22)

Substituting the functional form

u(x) = x−ν−1/2e−µxw(2x
√

2s + µ2 )

into (21), we arrive at Whittaker’s form for the confluent hypergeometric equation forw = w(z)

(see e.g. Slater (1960) and Buchholz (1969); � is defined in (17)):

w′′(z)+
(

−1

4
+

1
4 − ν2

z2 + �(s)

z

)
w(z) = 0

with the Whittaker functions M�,ν(·) and W�,ν(·) as solutions. Using the properties of the
Whittaker functions, we can verify that

ψs(x) = x−ν−1/2e−µxM�(s),ν(2x
√

2s + µ2 ), (23)

φs(x) = x−ν−1/2e−µxW�(s),ν(2x
√

2s + µ2 ) (24)

are the desired solutions, and their Wronskian (22) is

ws = 2
√

2s + µ2�(1 + 2ν)

�( 1
2 + ν − �(s))

(25)

(Slater (1960, p. 26, Equation (2.4.27))). Substituting (23)–(25) into (20) we arrive at the result
(18). Taking the limit as x → 0 and using the asymptotics

M�,ν(z) ∼ zν+1/2 as z → 0, (26)

we arrive at (19).
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Remark 2. (Connection with the Schrödinger equation with Coulomb potential.) For s ∈ C

the second-order ODE (21) has the form of the Sturm–Liouville equation

Au = λu (27)

with the Sturm–Liouville operator

A = −1

2

d2

dx2 −
(
ν + 1

2

x
+ µ

)
d

dx
(28)

and the spectral parameter λ = −s. The Liouville transformation

y = √
2x,

v(y) = 21/4
(
y√
2

)ν+1/2

eµy/
√

2u

(
y√
2

)

reduces (27) and (28) to the Liouville normal form

−v′′(y)+
(
µ2

2
−

√
2β

y
+ ν2 − 1

4

y2

)
v(y) = λv(y)

(see e.g. Linetsky (2002b) for a discussion of the Liouville transform). Setting E = λ−µ2/2,
l = ν − 1

2 , and a = √
2β, this normal form becomes

v′′(y)+
(
E + a

y
− l(l + 1)

y2

)
v(y) = 0. (29)

When l is zero or a positive integer and a > 0, this is the celebrated Schrödinger equation with
Coulomb potential in the theory of the hydrogen atom in quantum physics (see e.g. Titchmarsh
(1962, p. 99) or Morse and Feshbach (1953, p. 1663)). For half-integers ν = l+ 1

2 , the resolvent
kernel of the Bessel process with constant negative drift is thus very closely related to Green’s
function of the hydrogen atom. In this case, the eigenvalues (9) are closely related to the discrete
energy levels of the hydrogen atom.

Remark 3. (The spectrum.) In this paper, when we talk about the spectrum we refer to
the spectrum of the nonnegative Sturm–Liouville operator A = −G, the negative of the
infinitesimal generator G in L2([0,∞),m). We prefer to talk about the nonnegative spectrum
of A rather than the nonpositive spectrum of G.

Remark 4. (Connection with D. G. Kendall’s pole-seeking Brownian motion.) When ν =
d/2 − 1 for some integer d ≥ 2, a Bessel process with constant drift arises as the radial part of
the d-dimensional diffusion with the infinitesimal generator

1
2�+ µ

x

|x| · ∇,

where � is the standard d-dimensional Laplacian. When d = 2 and µ < 0, this process was
studied by Kendall (1974) in connection with his study of bird navigation, where it was called
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pole-seeking Brownian motion (see Pitman and Yor (1981, pp. 362–364) and Yor (1984) for
further developments).

Remark 5. (Bessel process terminology.) Yor (1984, p. 104) called the process with the
infinitesimal generator

G = 1

2

d2

dx2 +
(
ν + 1

2

x
− δ

)
d

dx

with δ > 0 a Bessel process with ‘naive’ drift δ in order to avoid confusion with the diffusion
obtained by taking the radial part of an R

d -valued Brownian motion started at the origin and
with some drift vector �δ and with the infinitesimal generator

1
2�+ �δ · ∇.

This latter diffusion has the infinitesimal generator

G = 1

2

d2

dx2 +
(
ν + 1

2

x
+ δIν+1(δx)

Iν(δx)

)
d

dx
,

where ν = d/2 − 1, δ = |�δ|, and Iν(z) is the Bessel function of order ν, and is usually called a
Bessel process with drift (see Watanabe (1975) and Pitman and Yor (1981, p. 310)). Here we
call the former process a Bessel process with constant drift to emphasize that the additional drift
term is a constant, and also to avoid confusion with the diffusion with infinitesimal generator

G = 1

2

d2

dx2 +
(
ν + 1

2

x
− δx

)
d

dx
,

which we call a Bessel process with linear drift.

Remark 6. (Connection of Lemma 1 with Proposition 12.2 of Pitman and Yor (1981).) The
result of Lemma 1 is closely related to Proposition 12.2 of Pitman and Yor (1981, p. 363)
(also Yor (1984, p. 106)) and can, in fact, be directly extracted from it by applying the absolute
continuity relationship in Lemma 2 below. For completeness, here we give an elementary proof
of the result in a form convenient for the purpose of proving Proposition 1. For related results
on Bessel processes with drift, the closely related topic of first hitting times of square root
boundaries for Bessel processes, and their applications to calculations of various functionals
of interest in mathematical finance, see Yor (1984), Matsumoto and Yor (2000, pp. 148–149),
Delbaen and Yor (2002), Kyprianou and Pistorius (2003) and Linetsky (2002a), (2003).

Proof of Proposition 1. Following Titchmarsh’s (1962) complex-variable approach to spec-
tral expansions, we analytically invert the Laplace transform (16) with the resolvent kernel given
by Lemma 1. We only sketch the proof here as it is similar to the proof given by Titchmarsh
(1962, pp. 98–100) for the spectral expansion associated with the Schrödinger equation with
Coulomb potential (29) when l is zero or a positive integer.

Regarded as a function of the complex variable s, Green’s function (18) has a branch cut
from s = −µ2/2 to s → −∞ on the negative real axis. It is convenient to parameterize the
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branch cut as s = − 1
2 (ρ

2 + µ2). The jump in Gs across the branch cut is

G(1/2)(µ2+ρ2)eiπ (x, y)−G(1/2)(µ2+ρ2)e−iπ (x, y)

= − i

ρ

|�( 1
2 + ν + iβ/ρ)|2
�(1 + 2ν)

(y
x

)ν+1/2
eµ(y−x)

×
{
Miβ/ρ,ν(−2iρ(x ∧ y))Wiβ/ρ,ν(−2iρ(x ∨ y))

�( 1
2 + ν + iβ/ρ)

+ M−iβ/ρ,ν(2iρ(x ∧ y))W−iβ/ρ,ν(2iρ(x ∨ y))
�( 1

2 + ν − iβ/ρ)

}

= − i

ρ

|�( 1
2 + ν + iβ/ρ)|2
�(1 + 2ν)

(y
x

)ν+1/2
eµ(y−x)

×Miβ/ρ,ν(−2iρ(x ∧ y))
{
Wiβ/ρ,ν(−2iρ(x ∨ y))
�( 1

2 + ν + iβ/ρ)
+ eiπ(ν+1/2)W−iβ/ρ,ν(2iρ(x ∨ y))

�( 1
2 + ν − iβ/ρ)

}

= − i

ρ

∣∣∣∣�(
1
2 + ν + iβ/ρ)

�(1 + 2ν)

∣∣∣∣
2(y
x

)ν+1/2
eµ(y−x)+πβ/ρMiβ/ρ,ν(−2iρx)M−iβ/ρ,ν(2iρy).

(30)

In the second equality, we used the symmetry property (15). In the third equality we used the
identity

W−�,ν(−z)
�( 1

2 + ν − �)
+ eiπ(ν+1/2)W�,ν(z)

�( 1
2 + ν + �)

= eiπ�M�,ν(z)

�(1 + 2ν)

(see Slater (1960, p. 14, Equation (1.9.9))).

(i) When ν > − 1
2 and µ < 0, Green’s function (18) also has simple poles {sn, n = 0, 1, . . . } at

1
2 + ν − �(sn) = −n, n = 0, 1, . . .

(poles of the gamma function �( 1
2 + ν − �(s))), that is,

s0 = 0 and sn = −µ
2

2

{
1 − (ν + 1

2 )
2

(n+ ν + 1
2 )

2

}
= −λn, n = 1, 2, . . . . (31)

Green’s function has the residues

Ress=snGs(x, y) = (−1)nβ

n! (n+ ν + 1
2 )

2�(1 + 2ν)

(y
x

)ν+1/2
eµ(y−x)

×Mn+ν+1/2,ν

(
2β(x ∧ y)
n+ ν + 1

2

)
Wn+ν+1/2,ν

(
2β(x ∨ y)
n+ ν + 1

2

)

= n!β(2βy)2ν+1e2µy

(n+ ν + 1
2 )

2ν+3�(2ν + n+ 1)
exp

(
− µn

n+ ν + 1
2

(x + y)

)

× L(2ν)n

(
2βx

n+ ν + 1
2

)
L(2ν)n

(
2βy

n+ ν + 1
2

)
. (32)
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The second equality follows from the reduction of the Whittaker functions to the generalized
Laguerre polynomials when the difference between the two indexes is a positive half-integer.
When � = ν + n+ 1

2 for n ∈ N, the functionsM�,ν(·) andW�,ν(·) become linearly dependent
and reduce to generalized Laguerre polynomials (see Abramowitz and Stegun (1972, pp. 505,
509–510)):

Mν+n+1/2,ν(z) = n!�(1 + 2ν)

�(2ν + n+ 1)
e−z/2zν+1/2L(2ν)n (z),

Wν+n+1/2,ν(z) = (−1)nn! e−z/2zν+1/2L(2ν)n (z).

For n = 0, λ0 = 0, and L(2ν)0 (z) = 1 and recalling that β = −µ(ν + 1
2 ), the residue (32) with

n = 0 reduces to the stationary density (3).
From the complex inversion formula we have

p(t; x, y) = pd(t; x, y)+ pc(t; x, y)

=
∞∑
n=0

esntRess=snGs(x, y)

− 1

2π i

∫ ∞

0
e−(1/2)(µ2+ρ2)t {G(1/2)(µ2+ρ2)eiπ (x, y)−G(1/2)(µ2+ρ2)e−iπ (x, y)}ρ dρ

(see Titchmarsh (1962)). Substituting the results (30), (31), and (32), we arrive at the spectral
representation (5), (6), and (8). The branch cut gives the continuous spectrum and the poles
give the discrete spectrum.

Since the origin is an entrance boundary when ν ≥ 0 and the regular reflecting boundary
when −1 < ν < 0, the limit limx→0 p(t; x, y) = p(t; 0, y) exists (the process can be started
at the origin). From the asymptotics (26) we have the limit

lim
x→0

(x−ν−1/2e−µxM−iβ/ρ,ν(2iρx)) = (2ρ)ν+1/2eiπ(ν/2+1/4)

and, recalling that

L(2ν)n (0) = �(n+ 2ν + 1)

n!�(2ν + 1)
,

the limit p(t; 0, y) is given by (5), (7), and (10) for µ < 0.

(ii) When −1 < ν < − 1
2 and µ < 0, Green’s function has only one simple pole, s0 = 0, with

the residue equal to the stationary density π(·), as in (11).

(iii) When ν > − 1
2 and µ > 0, Green’s function has no poles and, hence, there are no

eigenvalues (as in (12)).

(iv) When −1 < ν < − 1
2 and µ > 0, Green’s function has simple negative poles {sn = −λn,

n = 1, 2, . . . } with λn given by (9) and residues (32), proving (13).

Remark 7. (Real-variable approach to Sturm–Liouville expansions.) An alternative approach
to the proof of Proposition 1 is based on the real-variable approach to Sturm–Liouville expan-
sions (see McKean (1956) and Levitan and Sargsjan (1975)). This approach is entirely real.
We first consider the Sturm–Liouville problem (27) on the finite interval [0, u] with a boundary
condition (e.g. reflection) at the regular boundary u and then take the limit u → ∞. The
problem on the finite interval has a purely discrete spectrum. As u increases to infinity, the
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eigenvalues above µ2/2 are distributed more and more densely in [µ2/2,∞) and in the limit
merge into the continuous spectrum (see e.g. Levitan and Sargsjan (1975, pp. 266–273)). A
calculation of this type can be found in Linetsky (2001).

3. Computation and applications in queueing

The transition density given by Proposition 1 is easy to compute using MATHEMATICA®

and MAPLE® as these software packages include all the required special functions as built-in
functions. MATHEMATICA 4.1 running on a Pentium® III PC was used for all calculations
in this paper. For an example calculation, take ν = 1

2 and µ = −1 (β = 1) and start
the process at the origin, x = 0. We need to compute the expressions (7) and (10). The
Whittaker function M�,ν(·) is expressed in terms of the confluent hypergeometric function
1F1(a; b; z) by (14). The function 1F1(a; b; z) is available in MATHEMATICA with the
command Hypergeometric1F1[a, b, z]. The generalized Laguerre polynomials are
available with the command LaguerreL[n, a, z]. Due to the presence of the factor
(n+ ν + 1

2 )
2ν+3 in the denominator in (10), the terms in the series decrease as n−2ν−3 (in our

example asn−4) and the series converges rapidly. For example, the series needed to calculate the
valuepd(1; 0, 1) requires 12 terms to converge to three decimals and 48 terms to converge to four
decimals (with a computation time of a fraction of a second). To compute the integral (7), we
truncate the integration region at some finite value R and use the built-in numerical integration
routine in MATHEMATICA. The integrand in (7) includes an exponential factor e−(1/2)ρ2t that
ensures rapid convergence of the integral. For example, the integral needed to calculate the
value p(1; 0, 1) converges to five decimals on the interval [0, 5] (with a computation time of
approximately a second).

Figure 1 plots transition densities with t = 1
2 , 1, 2, 5, as well as the stationary density (3)

(it was produced with the plot function in MATHEMATICA). As t increases, the density
approaches the stationary density, with the t = 5 density being already very close to the
stationary density. This is intuitive from the analytical structure of the spectral expansion.
The stationary density is the first term in the spectral expansion corresponding to the principal
eigenvalue λ0 = 0. The terms in the series corresponding to the higher eigenvalues λn are
suppressed with the factor e−λnt (the λn are eigenvalues of the Sturm–Liouville operator,
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Figure 1: Transition densities p(t; 0, y) with t = 1
2 , 1, 2, 5 and the stationary density π(y). The Bessel

process parameters are ν = 1
2 , µ = −1, and x = 0.
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the negative of the infinitesimal generator G). The integrand in (7) corresponding to the
continuous spectrum is suppressed with the factor e−(1/2)(µ2+ρ2)t . Intuitively, the spectral
expansion provides a large-time expansion for the transition density, with the first term being
the stationary density. Traditionally in heavy-traffic studies of queueing systems, researchers
obtained explicit closed-form expressions for the stationary density and studied systems in
steady state (see e.g. Coffman et al. (1998)). In this paper, we demonstrate that the spectral-
expansion method produces the transition density in a form especially convenient for the study
of how the system approaches its steady state. Figure 1 clearly demonstrates it for the Bessel
process with constant drift µ < 0.

To evaluate the convergence rate to the steady state, the decay parameter is defined by

δ := sup{α ≥ 0 : p(t; x, y)− π(y) = O(e−αt ) for all x ∈ S},
where π(·) is the steady-state density and S is the state space (see Kijima (1997) for Markov
chains and Kou and Kou (2002) for diffusions; the author thanks Steven Kou for pointing this
out). For diffusions, if there are nonzero eigenvalues in addition to the principal eigenvalue
λ0 = 0, then δ = λ1. If the remaining spectrum is continuous, then δ is equal to the lowest
point of the continuous spectrum. For Bessel processes with constant drift µ < 0,

δ =

⎧⎪⎪⎨
⎪⎪⎩

µ2

2

{
1 −

(
ν + 1

2

ν + 3
2

)2}
, ν > − 1

2 ,

µ2

2
, −1 < ν < − 1

2 .

In both cases, the drift parameter µ < 0 regulates the convergence rate to the steady state: the
larger the absolute value of the drift, the larger the decay parameter and the faster the system
converges to its steady state.

4. Applications in finance: two analytically tractable nonaffine models

Feller’s (1951) square-root diffusion solving the SDE

dXt = κ(θ −Xt) dt + σ
√
Xt dBt , X0 = x > 0,

(where B is a standard Brownian motion) is one of the most widely used processes in finance,
where it is known as a CIR (Cox–Ingersoll–Ross) process (see Cox et al. (1985), Pitman
and Yor (1982), and Göing-Jaeschke and Yor (2003) for detailed studies and references). It
is used to model financial variables that are restricted to staying positive and are empirically
known to exhibit mean reversion, including the instantaneous default-free interest rate (Cox et
al. (1985)), instantaneous credit spreads (see e.g. Duffie and Singleton (1999)) and stochastic
volatility (see e.g. Heston (1993)). The model parameters θ , κ , and σ are interpreted as the
long-run level, the rate of mean reversion, and the volatility parameter respectively. When the
Feller condition is satisfied, 2κθσ−2 ≥ 1, the process has an unattainable entrance boundary
at the origin and possesses a stationary distribution with gamma density. The CIR process
is analytically tractable, admitting explicit closed-form expressions for the transition density,
as well as the state-price density, zero-coupon bonds and bond options in the CIR interest-
rate model. The availability of the closed-form expression for the transition density greatly
facilitates statistical estimation of the process parameters from empirical time-series data. The
availability of the closed-form expression for the state-price density greatly facilitates pricing
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of interest-rate derivatives in the CIR interest-rate model. For the spectral representation of the
CIR process and its applications in finance, see Davydov and Linetsky (2003), Gorovoi and
Linetsky (2004), Linetsky (2002b), (2003) (the latter paper deals with spectral expansions for
CIR and OU diffusions; related results on the OU diffusion can be found in Alili et al. (2003)).

A crucial feature of the CIR model is that both the infinitesimal driftκ(θ−x) and varianceσ 2x

are affine functions of the state variable. However, accumulated empirical evidence estimating
interest-rate models with the infinitesimal variance of the form σ 2x2γ suggests that empirically
γ ∼ 3

2 rather than γ ∼ 1
2 (see e.g. Chan et al. (1992)), thus contradicting the CIR specification.

Furthermore, recent empirical studies suggest that the short-rate drift is substantially nonlinear
in the short rate as well (see e.g. Ahn and Gao (1999)). It is thus desirable to find some nonaffine
specifications that are also analytically tractable. We shall show that the Bessel processes with
constant drift studied in this paper lead to two such specifications.

Let {Xt, t ≥ 0} be a Bessel process with ν > 1 and drift µ < 0 solving the SDE

dXt =
(
ν + 1

2

Xt
+ µ

)
dt + dBt , X0 = x > 0

(recall that for ν ≥ 0 the origin is an unattainable entrance boundary). For some σ > 0, define
a new process {rt := 4(σXt )−2, t ≥ 0}. From Itô’s lemma, it is a diffusion on (0,∞) solving
the SDE

drt = κ(θ − r
1/2
t )r

3/2
t dt + σr

3/2
t dB̃t , r0 = 4(σx)−2 > 0, B̃ = −B, (33)

κ = σ 2

2
(ν − 1) > 0, θ = − 2µ

σ(ν − 1)
> 0, (34)

with the infinitesimal variance σ 2r3 and nonlinear drift κ(θ− r1/2)r3/2. An explicit expression
for the transition density follows immediately from that for the Bessel process with constant
drift.

An alternative specification is obtained as follows. Let {Xt, t ≥ 0} be a Bessel process with
ν > 1

2 and drift µ < 0. For some σ > 0, define a new process {rt := (σXt )
−1, t ≥ 0}. From

Itô’s lemma, it is a diffusion on (0,∞) solving the SDE

drt = κ(θ − rt )r
2
t dt + σr2

t dB̃t , r0 = (σx)−1 > 0, B̃ = −B, (35)

κ = σ 2(ν − 1
2 ) > 0, θ = − µ

σ(ν − 1
2 )
> 0, (36)

with the infinitesimal variance σ 2r4 and nonlinear drift κ(θ − r)r2. An explicit expression for
the transition density follows immediately from that for the Bessel process with constant drift.
A model with interest-rate volatility σr2 but a different drift specification has been recently
studied by Lewis (1998).

The availability of closed-form expressions for the transition density (under the physical
measure) greatly facilitates statistical estimation of the process parameters from empirical
time-series data. Given the nonlinear nature of the infinitesimal drift and variance, we can
expect these specifications to fit the empirical interest-rate data better than the CIR process. In
addition to modelling interest rates, the processes of (33) and (34) and of (35) and (36) can
be applied for the modelling of other positive financial variables with mean reversion, such as
instantaneous credit spreads and stochastic volatility.

For the pricing of interest-rate derivatives, we need the state-price density. Let {rt , t ≥ 0} be
the instantaneous interest-rate (short-rate) process (under the risk-neutral probability measure).
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Any European-style interest-rate derivative with some payoff function f (rt ) at time t > 0 can
be valued by integrating the payoff function against the state-price density:

E

[
exp

(
−

∫ t

0
rudu

)
f (rt )

∣∣∣∣ r0 = x

]
=

∫ ∞

0
f (y)π(t; x, y) dy. (37)

The state-price density can be interpreted as the transition density of the diffusion r killed at the
linear rate. We shall now show that the state-price density π(t; x, y) for the short-rate models
of (33) and (34) and of (35) and (36) can be easily obtained in closed form from the transition
density of the Bessel process with constant drift.

Remark 8. ( 3
2 models.) The process (33) is an example of a so-called 3

2 model. Another
example that has recently been extensively considered in the literature can be constructed as
follows. Let {Xt, t ≥ 0} be a Bessel process with ν > 1 and with linear drift with µ < 0 such
that

dXt =
(
ν + 1

2

Xt
+ µXt

)
dt + dBt , X0 = x > 0.

For σ > 0, from Itô’s lemma, the reciprocal squared process {rt := (4/σ 2)X−2
t , t ≥ 0} is a

diffusion on (0,∞) solving the SDE

drt = κ(θ − rt )rt dt + σr
3/2
t dB̃t , B̃ = −B, r0 = 4

σ 2 x
−2,

κ = σ 2

2
(ν − 1) > 0, θ = − 4µ

σ 2(ν − 1)
> 0.

This diffusion with nonlinear drift and infinitesimal variance σ 2x3 is the reciprocal of the
square-root CIR process. This process was proposed by Cox et al. (1985, p. 402, Equation 50)
as a model for the inflation rate in their three-factor inflation model. They were able to solve the
three-factor valuation PDE for the real value of a nominal bond (see Equations (53) and (54)
of Cox et al. (1985)). More recently this diffusion appeared in Lewis (1994), Heston (1997),
Ahn and Gao (1999), and Lewis (2000) in different contexts. Heston (1997) and Lewis (2000)
applied this process in the context of stochastic volatility models. Lewis (1994) and Ahn and
Gao (1999) proposed this process as a model for the nominal short rate. Lewis (1994) (see
also Ahn and Gao (1999)) obtained an analytical solution for the zero-coupon bond price by
directly solving the PDE. This solution is, in fact, contained in a more general solution given
in Equation (54) of Cox et al. (1985) for their three-factor inflation model. Linetsky (2002b)
gives an alternative derivation based on the spectral expansion. Here, the process (33) has a
different nonlinear drift structure.

5. A useful absolute-continuity relationship for Bessel processes
with different indexes and drifts

We will need the following useful absolute continuity relationship for Bessel processes with
different indexes and drifts. Let {Rt , t ≥ 0} be a Bessel process with index ν ≥ 0 and constant
driftµ ∈ R starting at x ≥ 0. Consider on the space� = C(R+,R+) the process of coordinates
{Rt(ω) = ω(t), t ≥ 0} and its natural filtration {Ft = σ {Rs, s ≤ t}, 0 ≤ t ≤ ∞} and let
P(ν,µ)x denote the associated probability distribution on (�,F∞).
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Lemma 2. Fix x > 0, ν, α, β ≥ 0, and µ ≤ 0. For any {Ft+} stopping time T ,

d P(ζ,η)x

d P(ν,µ)x

=
(
x

RT

)ν−ζ
exp

{
1

2
(µ2 − η2)T + (µ− η)(x − RT )− β

∫ T

0

du

Ru
− α2

2

∫ T

0

du

R2
u

}

on FT+ ∩ {T < ∞}, where

ζ =
√
ν2 + α2, η = µ(ν + 1

2 )+ β

ζ + 1
2

. (38)

Proof. The result follows immediately from combining the absolute-continuity relationship
for standard Bessel processes without drift (Proposition 2.1 and Equation (2.f) of Pitman and
Yor (1981, p. 293); see also Yor (1984, p. 101)):

d P(ζ,0)x

d P(ν,0)x

=
(
x

RT

)ν−ζ
exp

{
−α

2

2

∫ T

0

du

R2
u

}
on FT+ ∩ {T < ∞}, where ζ =

√
ν2 + α2;

and the absolute-continuity relationship for Bessel processes with and without constant drift
(Pitman and Yor (1981, p. 362)):

d P(ν,µ)x

d P(ν,0)x

= exp

{
−µ

2

2
T + µ

(
RT − x − (ν + 1

2 )

∫ T

0

du

Ru

)}
on FT+ ∩ {T < ∞}.

In particular, for any fixed t > 0,

E(ν,µ)x

[
exp

{
−β

∫ t

0

du

Ru
− α2

2

∫ t

0

du

R2
u

}
f (Rt )

]

= e(1/2)(η
2−µ2)t E(ζ,η)x

[(
x

Rt

)ζ−ν
e(η−µ)(x−Rt )f (Rt )

]
, (39)

where E(ν,µ)x is the expectation with respect to P(ν,µ)x and ζ and η are given by (38).

Remark 9. For f ∈ C2, (39) can be seen as follows. Define the function

u(t, x) := E(ν,µ)x

[
exp

{
−β

∫ t

0

du

Ru
− α2

2

∫ t

0

du

R2
u

}
f (Rt )

]
. (40)

By the Feynman–Kac theorem, it solves the PDE

1
2uxx +

(
ν + 1

2

x
+ µ

)
ux −

(
β

x
+ α2

2x2

)
u = ut (41)

with u(0, x) = f (x). Define ζ and η as in (38). The substitution

u(t, x) = e(1/2)(η
2−µ2)t xζ−νe(η−µ)xv(t, x) (42)

reduces (41) to

1
2vxx +

(
ζ + 1

2

x
+ η

)
vx = vt

with v(0, x) = x−(ζ−ν)e−(η−µ)xf (x). By the Feynman–Kac theorem, the solution is

v(t, x) = E(ζ,η)x [R−(ζ−ν)
t e−(η−µ)Rt f (Rt )]. (43)

Substituting (40) and (43) into (42) we arrive at (39).
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6. The state-price densities of the nonaffine term structure models

Let {rt , t ≥ 0} be the short-rate process (33) with some σ > 0, θ > 0, and κ > 0 and
starting at r0 = x. Then, on application of Itô’s lemma, the process {Rt := 2σ−1r

−1/2
t } is a

Bessel diffusion with index ν and constant drift µ,

ν = 2κ

σ 2 + 1 > 1, µ = −κθ
σ
< 0,

and starting at R0 = (2/σ)x−1/2. From (39), for the expectation (37) we have

E

[
exp

(
−

∫ t

0
ru duf (rt )

) ∣∣∣∣ r0 = x

]

= E(ν,µ)
(2/σ)x−1/2

[
exp

{
− 4

σ 2

∫ t

0

du

R2
u

}
f

(
4

σ 2R2
t

)]

= e(1/2)(η
2−µ2)t

× E(ζ,η)
(2/σ)x−1/2

[(
2σ−1x−1/2

Rt

)ζ−ν
exp

(
(η − µ)

(
2

σ
x−1/2 − Rt

))
f

(
4

σ 2R2
t

)]
,

where

ζ =
√
ν2 + 8σ−2 > 1, η = µ

(
ν + 1

2

ζ + 1
2

)
< 0,

and for the state-price density of the interest-rate model (33) we have

π(t; x, y) = e(1/2)(η
2−µ2)t

(y
x

)(1/2)(ζ−ν)
exp

(
2

σ
(η − µ)(x−1/2 − y−1/2)

)

× p(ζ,η)(t; 2σ−1x−1/2, 2σ−1x−1/2)σ−1y−3/2, (44)

where p(ν,µ)(t; x, y) is the transition density of the Bessel process with index ν and constant
drift µ given explicitly in Proposition 1.

Next, let {rt , t ≥ 0} be the short-rate process (35) with some σ > 0, θ > 0, and κ > 0
and starting at r0 = x. Then, on application of Itô’s lemma, the process {Rt := σ−1r−1

t } is a
Bessel diffusion with index ν and drift µ,

ν = κ

σ 2 + 1

2
>

1

2
, µ = −κθ

σ
< 0,

and starting at R0 = 1/σx. From (39), for the expectation (37) we have

E

[
exp

(
−

∫ t

0
rudu

)
f (rt )

∣∣∣∣ r0 = x

]
= E(ν,µ)1/σx

[
exp

{
− 1

σ

∫ t

0

du

Ru

}
f

(
1

σRt

)]

= e(1/2)(η
2−µ2)t E(ν,η)1/σx

[
e(η−µ)(1/σx−Rt )f

(
1

σRt

)]
,

where

η = µ+ 1

σ(ν + 1
2 )
,
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and for the state-price density of the interest-rate model (35) we have

π(t; x, y) = exp{ 1
2 (η

2 −µ2)t+σ−1(η−µ)(x−1 −y−1)}p(ν,η)(t; σ−1x−1, σ−1y−1)σ−1y−2.

(45)
Having explicit analytical expressions for the state-price density (44) and (45) allows us to price
interest-rate derivatives in the short-rate models (33) and (35).

7. Conclusion

The main results of the present paper are (i) an explicit analytical expression for the spectral
representation of the transition density of the Bessel process with constant drift recently
appearing as a heavy-traffic limit in queueing theory and (ii) two new nonaffine positive and
mean-reverting diffusion specifications suited for modelling interest rates, credit spreads, and
stochastic volatility in finance. In heavy-traffic studies in queueing theory, researchers often
are limited to the steady-state analysis because no explicit solutions for the transition density
are available. Here we demonstrate that the spectral expansion method produces the transition
density in the form especially convenient for studying how the system approaches its steady
state, the stationary density being the first term in the spectral expansion. In finance, having an
explicit expression for the transition density greatly facilitates statistical estimation of model
parameters from historical time-series data, while having the state-price density (that includes
discounting) allows us to price derivatives by integrating the payoff against the state-price
density. We have obtained both the transition density and the state-price density for the two
new nonaffine models by relating them to the transition density of the Bessel process with
constant drift.
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